
系所別: 水文科學研究所 科目: ______大氣動力學

- 1. In the rotating Earth coordinate, the equation of horizontal wind (V) is written as $dV/dt = -\nabla \phi f \mathbf{k} \times V + F_r$, (1) where $d/dt = \partial/\partial t + V \cdot \nabla + \omega \partial/\partial p$, $\delta \phi = g \delta z$, $f = 2\Omega \sin \varphi$, the earth angular velocity $\Omega = 7.292 \times 10^{-5} \text{ s}^{-1}$, F_r is friction
- (a) what approximations have been made in deriving the above equation ? (5 %)
- (b) explain each of the forcing terms in (1), (10 %)
- (c) $f \mathbf{k} \times V$ is an "apparent force", explain why? (5 %)
- (d) draw the steady state force balance expressed by equation (1) at point P in the following ϕ field at an isobaric surface (10 %)

- (e) define geostrophic wind V_g (10 %)
- (f) derive $\nabla \cdot V_g = -(v_g/f)(\partial f/\partial y)$, give a physical meaning of the result. (5 %)
- (g) compute the div of the geostrophic wind (2) at 45° N for $v_g = 15 \text{ m s}^{-1} (5 \%)$
- 2. The concepts of geostrophic and gradient wind are valid for large-scale atmospheric motions. In mesoscale and convective-scale motions the force balance in the momentum equation is very different. For motion in the vertical (w), $dw/dt = -(1/\rho)(\partial p/\partial z) g + F_z$, where p is pressure, ρ density, F_z is friction, and Coriolis force neglected.

(2)

(a) By letting $\rho = \rho_o + \rho'$, $p = p_o + p'$, where basic state variables ρ_o and p_o are functions of z only and satisfy the hydrostatic balance.

Show that $(1/\rho)(\partial p/\partial z) + g = (1/\rho_o)(\partial p'/\partial z) + (\rho'/\rho_o)g$ (10 %)

(b) From $\theta = (p/\rho R)(p_s/p)^{\kappa}$, $\theta = \theta_o + \theta'$, where θ is potential temperature, $\kappa = -R/c_p$, $p_s = 1000$ mb,.

Show that $\theta'/\theta_0 \approx (1-\kappa) (p'/p_0) - \rho'/\rho_0$ (10%)

- (c) From the above, $dw/dt \approx -(1/\rho_o)(\partial p'/\partial z) (\theta'/\theta_o)g + F_z$ (3) Explain the meaning of each term in (3) (10 %)
- 3. Explain the following
- (a) Thermally direct circulation transport sensible heat upward. (10%)
- (b) The "Hadley circulation" does not extend from pole to equator in the earth's atmosphere. (10 %)