國立中央大學101學年度碩士班考試入學試題卷

所別:水文與海洋科學研究所碩士班 不分組(一般生) 水文與海洋科學研究所碩士班 不分組(在職生)	科目:流體力學	共	第頁
本科考試禁用計算器			*請在試卷答案卷(卡)內作答

1. What will be the:

- (a) (10%) Gauge pressure (in kPa) and
- (b) (15%) The absolute pressure (in kPa) of water at depth 12m below the surface? In this question, $\rho_{water} = 1000 kg/m^3$, and $p_{atmosphere} = 101 kN/m^2$.
- 2. (25%) The reservoir has a constant inflow of $Q_{in} = 0.1m^3/s$. The outflow discharge depends on the water depth h of the reservoir and is given by $Q_{out} = 0.02h$, where Q is in m^3/s and h is in meters. What is the equilibrium water depth h at which the reservoir depth neither increases nor decreases?
- 3. The velocity field of a flow is given by $u=3x^2t+y$, $v=xyt-t^2$, w=0, in which distances are in meters, time in seconds, and velocities in meters/second. Please answer the following questions:
 - (a) (10%) What is the acceleration measured by a stationary observer at x=2m, y=3m, and t=2s?
 - (b) (15%) What is the acceleration experienced by a fluid particle located at the same time and place as in (a)?
- 4. Water can be approximated as in incompressible fluid.
 - (a) (10%) Show that the flow field given by $\vec{V} = x^2 y \vec{i} (3x + 2xy^2) \vec{j} + 2xy \vec{k}$ does not describe a valid flow field for water. (Note: \vec{i} , \vec{j} , and \vec{k} are unit vectors in the x-, y-, and z-directions).
 - (b) (15%) How might you change the z-component of the flow field given above so that the resulting flow field is incompressible?