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Compensation at 
University of California (2012)

 Berkeley

Gross pay above $200K – 430 people!

Gross pay above $300K – 89 people!

 Los Angles

Gross pay above $200K – 1471 people!

Gross pay above $300K – 611 people!

$ 305,733.30 !! => NT $25128/per day
https://ucannualwage.ucop.edu/wage/
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Robert E. Horton Medal
 2013 Soroosh Sorooshian  (UC Irvine) 2012   Keith Beven (Lancaster )
 2011 Murugesu Sivapalan  (UIUC) 2010   Jacob Bear (IIT)
 2009 William E. Dietrich (UC Berkeley) 2008   Vijay K. Gupta (UCo, Boulder)
 2007 Rafael L. Bras (GIT) 2006   Thomas Schmugge (USDA)
 2005 Gedeon Dagan (Tel Aviv) 2004   Garrison Sposito (UC Berkeley)
 2003 Shlomo P. Neuman (U Arizona) 2002   Jean-Yves Parlange (Cornell)
 2001 Donald R. Nielsen (UC Davis) 2000   M. Gordon Wolman (Die)
 1999 Wilfried H. Brutsaert (Cornell) 1998   Ignacio Rodriguez-Iturbe (Princeton
 1997 John D. Bredehoeft 1996   Mark Meier
 1995 Don Kirkham 1994   Mikhail I. Budyko
 1992 Luna B. Leopold 1990   Paul A. Witherspoon
 1988 Peter S. Eagleson 1986   Abel Wolman
 1984 Charles V. Theis 1982   John R. Philip
 1980 William C. Ackermann 1978   Harold A. Thomas, Jr.
 1976 Walter B. Langbein
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Motivation
(Field Observation)
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Field Observation

Fluctuations of water level in a 52-m deep 
well induced by seismic waves excited by 

passing trains and an earthquake.
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Field  Experiments
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Laboratory Experiment
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Laboratory Observation

Stimulation time: 360s                 Pore pressure gradient: 3 kPa/m
Free-phase TCE observed           Permeability: 1.1x10-10 m2 (111 d)
Roberts et al., Environ. Engin. Sci. 18(2):67-79 (2001)
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Problems to be Addressed

 Although the potential benefits of seismic 
wave stimulation have been demonstrated in 
laboratory and field experiments, they lack a 
sound theoretical basis. 

 Seismic wave stimulation will be not fully 
developed into a predictable and reliable field 
technology until more fundamental research is 
performed to understand better the basic 
science controlling enhancement phenomena.
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Statement of Problem

•Porous medium containing two
immiscible fluids (oil and water or air 
and water)

•Solid: porous, isotropic, homogeneous, 
and elastic

•Fluids: compressible and viscous
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Methodology

Two-phase fluid flow in porous 
media

[continuum mechanics of mixtures]

Elastic wave propagation
[linear stress-strain relations]

Coupled
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Classical Hydrological Model

•An uncouple model - representing the 

intricate interaction between interstitial 

fluid flow and solid matrix deformation 

simply using a single lumped parameter, 

known as storage coefficient.
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Classical Hydrological Model

( )S b g nρ α β= +

2T hh
S t

∂∇ =
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Transient groundwater flow in confined aquifer

Terzaghi theory
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Physically-based Model 
(Poroelasticity)

•The solid and fluid constituents should 

be treated on an equal footing, and their 

displacement vectors were systemically 

formulated in the coupled equations of 

motion. 
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Mass Balance Equations

0v
t

=⋅∇+
∂

∂ )()(
ααα

αα θρθρ

Storage Outflow
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Momentum Balance 
Equations

0D v t g M
Dt

α
α

ααα α α α α αρ θ ρ θ ρ θ− ∇ ⋅ − − =
r ur ur uur r

Inertia Stress Gravity Interphase
Exchange
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Constraints on Constitutive 
Relationships

•Objectivity

•Symmetry

•Entropy inequality

•Linearity
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Mass Balance Equations with 
Constitutive Relationships

0v
t

=⋅∇+
∂

∂ )()(
ααα

αα θρθρ

no change!
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Linear Stress-Strain Relations in 
Unsaturated Porous Media
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Porous Medium with Two
Fluids (Acoustic Motions)
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Governing Equations [Lo et al., 2005, Water Resources Researches]:
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Porous Medium with One
Fluid (Acoustic Motions)
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Dispersion Relations
2 2 2

3 2
11 22 33 442 2 2( ) ( ) ( ) 0D D D D

k k k
ω ω ω+ + + =

2

2This equation is a cubic polynomial in  and, therefore, 

   it will in general have three complex roots.  
When the wave excitation frequency is stipulated, the corresponding 
   phase speed and atte

k
ω

nuation coefficient can be deduced.  
The amplitude of the bulk waves always diminishes with distance, 
   and this condition requires 0,   which, in turn, implies that only 
   three of the six soluti

ik >
ons for the attenuation coefficient are physically possible.

where  wave number attenuationr i r ik k k k k= + = =
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Dispersion Relations for the 
Free Vibration Problem

( P h a s e V e lo c i t y )
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Select vibrational frequency

Input elasticity and hydraulic data

Viscous and inertial coupling parameters
Water retention curve 

Hydraulic conductivity function

Three roots for wave number
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 

Phase Velocity (P1 Wave)
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 
Attenuation Coefficient (P1 Wave)
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Physical Mechanism

 First term is proportional to the square of the difference 
in material densities of the two pore fluids, multiplied 
by the product of their relative mobilities. 

 A second term in the model expression is inversely 
proportional to the square of an average kinematic 
shear viscosity weighted by relative permeability.  

 The first term should be large for an air-water mixture, 
but small for an oil-water mixture, whereas the reverse 
should be true for the second term.
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Physical Mechanism
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 

Phase Velocity (P2 Wave)
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 
Attenuation Coefficient (P2 Wave)
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Physical Mechanism

 Effective dynamic shear viscosity 
parameter for a two-fluid system defined 
in terms of relative mobilities

1 2

1 2 2 1 1 2

1
( )eff

r rb b k k
η ηη

η η
= =

+ +
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Physical Mechanism
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 
Attenuation Coefficient (P2 Wave)
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 

Phase Velocity (P3 Wave)
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 
Attenuation Coefficient (P3 Wave)
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Acoustic Wave Propagation
in Unconsolidated Fine Sandy Loam 
Attenuation Coefficient (P3 Wave)
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Insights from Numerical 
Results

 The P1 wave is a sound wave, whereas the P2 and P3 
waves are related to dissipative behavior.

 Waves of higher frequency have higher attenuation.

 The P3 wave has the highest attenuation coefficient 
and the lowest phase velocity.

 The P1 and P2 waves in a two-fluid system are 
analogous to the fast and slow compressional waves 
in Biot theory.
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Motional Modes
[Lo et al., 2010; Advances in Water Resources]
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Motional Modes 
(One-Fluid System)

S F

S F

P1 Wave

P2 Wave

Analysis based on Normal Coordinates !!
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Motional Modes 
(Two-Fluid System)

S NF WF

S NF WF

S NF WF

S NF WF

P1 Wave

P2 Wave

P3 Wave
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Boundary Value Problem
[Lo et al., 2012, Journal of Applied Geophysics]
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Boundary Value Problem –
Unconsolidated Sand saturated by 

TCE
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Laboratory Observation

Stimulation time: 360s                 Pore pressure gradient: 3 kPa/m
Free-phase TCE observed           Permeability: 1.1x10-10 m2 (111 d)
Roberts et al., Environ. Engin. Sci. 18(2):67-79 (2001)
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Connecting 
Acoustic Waves Attributes 

to 
Subsurface Hydrological and 

Geological Parameters

[Lo et al., 2008, 2010; Journal of Hydrology]
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Quantitative Connection between 
Porosity and Phase Speed

water-saturated
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Quantitative Connection between 
Permeability and Attenuation Coefficient
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Consolidation Theory in 

Unsaturated Porous Media
[Lo et al., 2014; Vadose Zone Journal]
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Consolidation
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Governing Equations [Lo et al., 2013]:
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Initial Condition

• Terzaghi - uncoupled

• Biot – coupled

*( ,0)p z p=

*( ,0)p z pγ= γ : loading efficiency

Saturated porous media

Unsaturated porous media
*

2 2( ,0)p z pγ=*
1 1( ,0)p z pγ=
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Future Works

Dynamic Boundary conditions
Layered Media
Experimental verification: 

- Laboratory
- Field 


