Modeling and Simulating the Hazardous Flows over Non-Trivial Topography

國立中央大學 水文與海洋科學研究所

7th January 2014

Yih-Chin Tai (戴義欽)

國立成功大學 水利及海洋工程學系 Dept. Hydraulic & Ocean Engineering, National Cheng Kung University, Tainan, Taiwan.

Contents

- Motivation and background
- Coordinate system for general topography
- Model equations and Numerical example
- Reconstruction of the Hsiaolin landslide catastrophe
- Concluding remarks

Earthquake induced landslide in middle Taiwan, 2nd June 2013

(Magnitude 6.3, Depth 10 km) (from Youtube)

Heavy rainfall induced landslide in southern Taiwan, 1st September 2013

(after the Typhoon Kong-Rey 康芮) (from Youtube)

Hsiaolin catastrophe (2009)

- Typhoon Morakot
- Aug. 7th-10th 2009
- > 2,000 mm accumulated precipitation in southern Taiwan
- Total 724 deaths (474 in Hsiaolin catastrophe)

八八水災圖片情報網

C. Y. Kuo, Y. C. Tai, C. C. Chen, K. J. Chang, A. Y. Siau, J. J. Dong, R. H. Han, T. Shimamoto and C. T. Lee, JGR (2011)

Volume: ca. $24 \pm 2 \text{ Mm}^3$, Run-out distance: c.a. 2,700 m Descending elevation: c.a. 800 m

Three main challenges in simulating the behavior:

- Gravity-driven flows over complex topography
 - an appropriate coordinate system (local curvature)
 - an appropriate mesh system for the complex topography (depth-integration or not)
- Characteristics of the flow
 - constitutive relation (rheology)
 - single-phase or mixture theory
- Deformable basal surface
 - entrainment and deposition
 - non-material surface
 - evolution of the basal surface

Coordinates for general topography (BW 2004)

• Position vector in the flow

$$\vec{r} \equiv r_x \,\mathbf{e}_x + r_y \,\mathbf{e}_y + r_z \,\mathbf{e}_z = \vec{\rho} + \zeta \,\vec{n}$$
$$= \left(x + \zeta \,n_x\right) \mathbf{e}_x + \left(y + \zeta \,n_y\right) \mathbf{e}_y + \left(b + \zeta \,n_z\right) \mathbf{e}_z$$

Coordinate Transforms

• Coordinate Transformation (e.g. Hui 2004, Hui 2007)

$$d\vec{r} = \partial_{\lambda}\vec{r}\,d\lambda + \partial_{\xi}\vec{r}\,d\xi + \partial_{\eta}\vec{r}\,d\eta + \partial_{\zeta}\vec{r}\,d\zeta = \vec{Q}\,d\lambda + \tilde{\Omega}\,d\vec{\xi} \qquad dt = d\lambda$$

where

 \vec{Q} is the local velocity of the coordinate $\widetilde{\mathbf{\Omega}} = \nabla_{\vec{z}} \vec{r}$ is the Jacobian matrix

• The choice of the coordinate velocity

- \vec{Q} is zero \Rightarrow Eulerian description
- \vec{Q} is chosen to the velocity of the fluid particle \Rightarrow Lagrangian description
- \vec{Q} is set to the basal entrainment/deposition rate
 - \Rightarrow Terrain-following coordinate

Equations of Conservative Laws

• Equations of mass and momentum conservation

$$\partial_{i}u^{i} = 0$$

$$\partial_{t}u^{i} + \partial_{j}(u^{i}u^{j} - t^{ij}) = g^{i}$$
 for $i, j \in \{x, y, z\}$

$$\vec{v} = u^{x} \mathbf{e}_{x} + u^{y} \mathbf{e}_{y} + u^{z} \mathbf{e}_{z}$$
$$= u^{\xi} \mathbf{g}_{\xi} + u^{\eta} \mathbf{g}_{\eta} + u^{\zeta} \mathbf{g}_{\zeta}$$

• Transformed equations in the topography-fitted coordinates

$$\partial_{\lambda} J + \partial_{m} u^{m} = 0 \qquad \qquad J = \det \tilde{\Omega}$$
$$\partial_{\lambda} \left(J u^{i} \right) + \partial_{m} \left(J u^{i} \left(u^{m} - Q^{m} \right) - J \Sigma^{im} \right) = J g^{i} \qquad \qquad dt = d\lambda$$

• The stress term

$$\Sigma^{in} = \Omega^i_m t^{mn}$$

for
$$i, j \in \{x, y, z\}, m, n \in \{\xi, \eta, \zeta\}$$

Remark: A similar treatment for Euler equations can be found in *Vinolur* (1974) *J. Comput. Phys.*

Approximation and Depth Integration

• Jacobian matrix

$$\tilde{\boldsymbol{\Omega}} = \begin{pmatrix} \left(\mathbf{I} - \zeta \partial_{\mathbf{x}} \mathbf{s}\right) \partial_{\xi} \mathbf{x} & -\mathbf{s} \\ \left(\partial_{\xi} b\right)^{T} + \left(\zeta \partial_{\xi} c\right)^{T} & c \end{pmatrix} = \begin{pmatrix} \partial_{\xi} \mathbf{x} & -\mathbf{s} \\ \left(\partial_{\xi} b\right)^{T} & c \end{pmatrix} + O\left(\varepsilon^{1+\alpha}\right) = \tilde{\boldsymbol{\Omega}}_{b} + O\left(\varepsilon^{1+\alpha}\right)$$

$$J = \det \tilde{\mathbf{\Omega}} = J_b + O(\varepsilon^{1+\alpha})$$

where

$$\mathbf{s} = \begin{pmatrix} s_x \\ s_y \end{pmatrix} = \begin{pmatrix} c\partial_x b \\ c\partial_y b \end{pmatrix}, \quad \partial_{\xi} b = \begin{pmatrix} \partial_{\xi} b \\ \partial_{\eta} b \end{pmatrix}, \quad \partial_{\xi} c = \begin{pmatrix} \partial_{\xi} c \\ \partial_{\eta} c \end{pmatrix},$$
$$\partial_{\mathbf{x}} \mathbf{s} = \begin{pmatrix} \partial_x s_x & \partial_y s_x \\ \partial_x s_y & \partial_y s_y \end{pmatrix}, \quad \partial_{\xi} \mathbf{x} = \begin{pmatrix} \partial_{\xi} x & \partial_{\eta} x \\ \partial_{\xi} y & \partial_{\eta} y \end{pmatrix}.$$

Depth-integrated equations

$$\frac{\partial}{\partial\lambda} (J_b h) + \frac{\partial}{\partial\xi} (J_b h \overline{u}^{\xi}) + \frac{\partial}{\partial\eta} (J_b h \overline{u}^{\eta}) = -J_b E$$

$$\begin{aligned} \frac{\partial}{\partial \lambda} \begin{pmatrix} J_b h \overline{u}^x \\ J_b h \overline{u}^y \end{pmatrix} + \frac{\partial}{\partial \xi} \begin{pmatrix} J_b \overline{\sigma}_{\parallel} h \overline{u}^x \overline{u}^{\xi} + J_b h \overline{p} M_{11} \\ J_b \overline{\sigma}_{\parallel} h \overline{u}^y \overline{u}^{\xi} + J_b h \overline{p} M_{21} \end{pmatrix} \\ + \frac{\partial}{\partial \eta} \begin{pmatrix} J_b \overline{\sigma}_{\parallel} h \overline{u}^x \overline{u}^{\eta} + J_b h \overline{p} M_{12} \\ J_b \overline{\sigma}_{\parallel} h \overline{u}^y \overline{u}^{\eta} + J_b h \overline{p} M_{22} \end{pmatrix} = -J_b \mathbf{E} \begin{pmatrix} u_b^x \\ u_b^y \end{pmatrix} + \mathbf{s}^{\xi} \end{aligned}$$

• Material equation

-

- Boundary conditions
 - Drag free at flow surface.
 - *Coulomb friction at basal surface (or Voellmy's law).*
 - Non-material surface condition at basal surface due to entrainment/deposition.

• basic concept

Erosion-deposition rate

• BCRE-Model (1994), Tai & Kuo (Acta Mech., 2008), Tai & Lin (Phys. Fluids, 2008)

Three states for basal surface:

 $\begin{cases} \theta < \theta_n \text{ and } \|\mathbf{q}_{\parallel}\| > v_{\text{th}} \Rightarrow \mathcal{E}_+ = 0 \text{: immobile basal surface,} \\ \theta < \theta_n \text{ and } \|\mathbf{q}_{\parallel}\| < v_{\text{th}} \Rightarrow \mathcal{E}_+ > 0 \text{: deposition,} \\ \theta > \theta_n \qquad \Rightarrow \mathcal{E}_+ < 0 \text{: erosion.} \end{cases}$

where

Is the temporally variable coordinates necessary?

- Material : Ottawa sand (ϕ : 0.3~0.6 mm)
- Width of channel: 38 mm, Inclination angle: 34° to horizontal
- Gate opening at the top: 10, 15, 20 mm

Tai & Lin (Phys. Fluids, 2008)

Traveling shock wave: Pudasaini et al, Phys. Fluids (2007)

• Comparison with experimental data (*with deposition*)

• Comparison with experimental data (without deposition)

Without Deposition

With deposition

Tai & Lin (Phys. Fluids, 2008)

Experiments and comparison with theoretical prediction

by

L.T. Sheng, Y.C. Tai, C. Y. Kuo and S.S. Hsiau

Experimental setup

Three inclination angles: 32, 35 and 38 degree

Experimental results

Experimental results

• Initial condition for theoretical prediction

Deposition position

Further applications

Coulomb-Mixture Theory (with deposition)

by

Y. C. Tai, and C. Y. Kuo, Nat. Hazards Earth Syst. Sci. (2012)

Coulomb-mixture theory (Iverson & Denlinger, JGR 2001)

• Conservation of mass and momentum

$$\begin{split} & \frac{\partial \rho_s}{\partial t} + \operatorname{div}\left(\rho_s \vec{q_s}\right) = 0 \,, \quad \frac{\partial \rho_s \vec{q_s}}{\partial t} + \operatorname{div}\left(\rho_s \vec{q_s} \otimes \vec{q_s} - \tilde{\mathbf{T}}_s\right) = \rho_s \vec{g} + \vec{m} \,, \\ & \frac{\partial \rho_f}{\partial t} + \operatorname{div}\left(\rho_f \vec{q_f}\right) = 0 \,, \quad \frac{\partial \rho_f \vec{q_f}}{\partial t} + \operatorname{div}\left(\rho_f \vec{q_f} \otimes \vec{q_f} - \tilde{\mathbf{T}}_f\right) = \rho_f \vec{g} - \vec{m} \,, \end{split}$$

• Transformation into UC system

$$\begin{aligned} \partial_{\lambda} (J\nu_{s}) &+ \partial_{m} \Big[J\nu_{s} (q_{s}^{m} - Q^{m}) \Big] = 0 , \qquad \partial_{\lambda} (J\nu_{f}) + \partial_{m} \Big[J\nu_{f} (q_{f}^{m} - Q^{m}) \Big] = 0 , \\ \partial_{\lambda} (J\nu_{s} u_{s}^{i}) &+ \partial_{m} \Big[J\nu_{s} u_{s}^{i} (q_{s}^{m} - Q^{m}) - J\Sigma_{s}^{im} \Big] = J\nu_{s} g^{i} + \frac{1}{\hat{\rho}_{s}} m^{i} , \\ \partial_{\lambda} (J\nu_{f} u_{f}^{i}) &+ \partial_{m} \Big[J\nu_{f} u_{f}^{i} (q_{f}^{m} - Q^{m}) - J\Sigma_{f}^{im} \Big] = J\nu_{f} g^{i} - \frac{1}{\hat{\rho}_{f}} m^{i} , \end{aligned}$$

where

$$i \in \{x, y, z\} \text{ and } m \in \{\xi, \eta, \zeta\} \qquad \qquad \rho_f = \nu_f \hat{\rho_f} \qquad \rho_s = \nu_s \hat{\rho_s}$$
$$\tilde{\mathbf{T}}_{s,f} = T_{s,f}^{ij} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_i = \Sigma_{s,f}^{im} \hat{\mathbf{e}}_i \otimes \vec{g}_m \qquad \qquad \hat{\rho}_s = \text{const. and } \hat{\rho}_f = \text{const.}$$

Coulomb-mixture theory (Tai & Kuo, Nat. Hazards Earth Syst. Sci., 2012)

• Assumptions in Coulomb mixture theory

- (a) Shallowness of the flowing layer and the curvature
- (b) Saturation: $\nu_s + \nu_f = 1$
- (c) Small relative velocity: $|\vec{q_f} \vec{q_s}| << |\vec{q_s}| \Rightarrow \vec{m} = 0$
- (d) Erosion/deposition rates of both solid and fluid constituents are equal
- (e) Total stress: $\tilde{\mathbf{T}} = \tilde{\mathbf{T}}_s + \tilde{\mathbf{T}}_f$ with $\tilde{\mathbf{T}}_s = \tilde{\mathbf{T}}_{eff}$ and $\tilde{\mathbf{T}}_f = -\mathbf{I}p + \nu_f \tilde{\mathbf{T}}_{vis}$
- (f) Solid constituent: Coulomb friction at the basal surface
- (g) Fluid constituent: Newtonian fluid
- (h) Earth pressure coefficient: $K_{act/pas} = 1$
- **Depth-integration** with boundary conditions (BCs)

Coulomb-mixture theory (Tai & Kuo, Nat. Hazards Earth Syst. Sci., 2012)

• The leading-order governing equations of Coulomb mixture theory in UC system

$$\begin{split} \frac{\partial}{\partial\lambda}(J_bh) &+ \frac{\partial}{\partial\xi}(J_bhq_0^{\xi}) + \frac{\partial}{\partial\eta}(J_bhq_0^{\eta}) = -J_b\,\mathcal{E}_- + \mathcal{O}(\epsilon^{1+\gamma})\,.\\ \frac{\partial}{\partial\lambda}(J_bhu_0^i) &+ \frac{\partial}{\partial\xi}\left(J_bhu_0^iq_0^{\xi}\right) + \frac{\partial}{\partial\eta}(J_bhu_0^iq_0^{\eta}) - \frac{\partial}{\partial\xi}\left((1-\Lambda_f)\epsilon J_bh\overline{\Sigma^{i\xi}}\right) - \frac{\partial}{\partial\eta}\left((1-\Lambda_f)\epsilon J_bh\overline{\Sigma^{i\eta}}\right)\\ &= -J_b\,\mathcal{E}_-u_b^i - \epsilon^{\alpha}\,J_b\,h\,A_c\,n^i + J_b\,h\,c\,n^i - (1-\Lambda_f)\epsilon^{\beta}J_bN_b\mu\frac{u_b^i}{||\vec{q}_b||} + J_bs_f^i + J_bhg^i + \mathcal{O}(\epsilon^{1+\gamma}) \end{split}$$

with

$$\begin{split} s_f^i &= \tilde{\Omega}_m^i \left(-\epsilon h \frac{\partial (p_{bed})}{\partial m} + \epsilon \frac{\nu_f h}{N_R} \frac{\partial^2 (q_0^m)}{\partial n^2} - \frac{\nu_f}{\epsilon} \frac{3}{N_R} \frac{q_0^m}{h} \right) \quad \text{and} \quad p_{bed} = \Lambda_f h c \\ N_R &= \rho H \sqrt{gL}/\mu \text{ is analogous to the Reynolds number for Newtonian fluid} \\ i &\in \{x, y\}, \quad m \in \{\xi, \eta\} \end{split}$$

Comparison without/with deposition procedure

Levee formation

Levee formation

Levee formation (cross section view)

Further applications

Erosional Dam-Break Shear Flows

by Y. T. Huang and Y. C. Tai

Coordinate system for general topography

Flow structure postulation

• Previous postulated flow structure (Fraccarollo and Capart, 2002, JFM)

- thin layers
- almost uniform velocity profile
- constant sediment concentration (mixture layer and bed)

 C_0

- hydrostatic pressure
- Measurement of a sudden dam break (Spinewine and Capart, 2013, JFM)

Flow structure postulation

• Current postulated flow structure over the terrain-fitted coordinate system

- thin layers
- almost uniform velocity profile for water layer and linear velocity profile for mixture layer
- constant sediment concentration for mixture layer and bed but of different values
- hydrostatic distribution for the pressure

Depth-integrated equations

• Equations of mass balance

$$\partial_t (J_b h) + \partial_{\xi} (J_b u^{\xi} (h - \frac{1}{2} h_s)) = -J_b \mathsf{E}$$
$$\partial_t (J_b h_s) + \partial_{\xi} (\frac{1}{2} J_b h_s u^{\xi}) = -J_b \alpha_C^{-1} \mathsf{E}$$

• Equations of momentum balance

$$\alpha_{c} = \frac{\phi_{s}}{\phi_{b}}, \quad r = (\rho_{s}/\rho_{w}-1)\phi_{s}$$
$$\Sigma^{x\xi} = \Omega_{m}^{x}t^{m\xi}, \quad \Sigma^{x\zeta} = \Omega_{m}^{x}t_{b}^{m\zeta}$$
$$J_{b} = \det \tilde{\Omega}_{b}$$

$$\partial_t \left(J_b \left(h + \frac{r-1}{2} h_s \right) u^x \right) + \partial_{\xi} \left(J_b \left[\left(h + \frac{r-2}{3} h_s \right) u^x u^{\xi} + \Sigma^{x\xi} \right] \right)$$
$$= -J_b \mathsf{E} \left(h + r h_s \right) u_b^x - J_b s_x c \left(h + r h_s \right) g - J_b \Sigma_b^{x\zeta}$$

where jump conditions at bed $M_{\text{basal}} = \rho_{\text{G}} \left(\boldsymbol{u}_{\text{int}} - \boldsymbol{u}_{\text{G}} \right) \cdot \boldsymbol{n}_{\text{b}} = \rho_{\text{L}} \left(\boldsymbol{u}_{\text{int}} - \boldsymbol{u}_{\text{L}} \right) \cdot \boldsymbol{n}_{\text{b}}$ $M_{\text{basal}} \left(\boldsymbol{u}_{\text{G}} - \boldsymbol{u}_{\text{L}} \right) = \boldsymbol{t}_{\text{G}} \boldsymbol{n}_{\text{b}} - \boldsymbol{t}_{\text{L}} \boldsymbol{n}_{\text{b}}$

• Effect of erosion

• Result of simulation

Experiment by Fraccarollo & Capart (2002)

Numerical simulation by current method

Reconstruction of the Hsiaolin Landslide Catastrophe, Taiwan 2009

by

C. Y. Kuo, Y. C. Tai, C. C. Chen, K. J. Chang, A. Y. Siau, J. J. Dong, R. H. Han, T. Shimamoto and C. T. Lee, JGR (2011)

Animation

Optimal friction angle: 11.47° (agree with the friction coefficient projection relation on the geometric constraint, and Staron & Lajeunesse ,2009)

Duration: 110 s Volume: 26.17 Mm³ Comput. domain: $3,710 \times 2,220 \text{ m}^2$ Mesh size: 10× 10 m²

Optimization process:

$$h_{std}^2(\mu) = \min_{\mu} \frac{1}{A} \int_A (h(\mathbf{x};\mu) - h_{meas}(\mathbf{x}))^2 \, dA$$

Transient volume fluxes

- The max. speed reaches about 50 m/s in the anonymous creek valley.
- The flux across section DD' peaks at about 42 sec.
- The two streams reach their maxima at about 62 and 64 sec.
- About **7%** of the slid volume flow through the village.

Flow snapshots in comparison with the near-surface magnetic surveys

- Yellow line indicates the village area
- Red dashed line indicates the boundary of the magnetic anomalies (destruction front)
- Coincidence with the flow boundary (1 m depth)

Concluding remarks

Modeling part:

- An alternative formulation for shallow hazardous flows over non-trivial and deforming topography is presented.
- The key features of this formulation are illustrated by the numerical examples.

Application part:

- Experimental validation: Upstream traveling wave; Chute experiment.
- Numerical example: Levee formation by Coulomb-mixture theory; Erosional dam-break shear flows.
- With the hydrodynamic model over general topography, the Hsiaolin landslide event can be favorably reconstructed.

However,